某电器超市销售A B两种型号的电风扇,A型号每台进价为200元,B型号每台进价分别为150元,下表是近两天的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一天 | 3台 | 5台 | 1620元 |
第二天 | 4台 | 10台 | 2760元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G, CD=AE.
(1)求证: CG=EG.
(2)已知BC=13, CD=5,连结ED,求△EDC 的面积.
如图,网格中每个小正方形的边长为1,点B、C的坐标分别为(-1, 3), (0, 1).
(1)建立符合条件的直角坐标系(要求标出x轴,y轴和原点),并写出点A的坐标
(2)线段AB上任意一点的坐标可以表示为
(3)在y轴上找到一点P,使得S△ABP = 3S△ABC,求出点P的坐标.
如图,直线I表示一条公路,点A, B表示两个村庄.现要在公路l上建一个加油站P.
(1)加油站P到A, B两个村庄距离相等,用直尺(无刻度)和圆规在图l中作出P的位置.
(2)若点A,B到直线l的距离分别是1km和4km,且A,B两个村庄之间的距离为5km,加油站P到A, B两个村庄之间的距离最小,在图2中作出P的位置(作图工具不限),最短距离为__ _ km.
如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠4
解一元一次不等式组 并写出它的整数解.