(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.
(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.
如图,AB是半圆O的直径,点C圆外一点,OC垂直于弦AD,垂足为点F,OC交⊙O于点E,连接AC,∠BED=∠C.
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)是否存在BE平分∠OED的情況?如果存在,求此时∠C的度数;如果不存在,说明理由.
如图1是荡秋千的图片,起始状态下秋千顶点O与座板A的距离为2m(此时OA垂直于地面)如图2,现一人荡秋千时,座板到达点B(OA不弯曲)
(1)当∠BOA=30°时,求AB弧线的长度(保留π)
(2)当从点C荡至点B,且BC与地面平行,BC=3m时,若点A离地面0.4m,求点B到地面的距离(保留根号).
如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.
(1)求线段CD的长;
(2)求线段DB的长度.
如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为_____.
如图,在平面直角坐标系中,正方形ABCD的边长为2,正方形EFGH的边长为5,点A的坐标为(﹣4,0),点E的坐标为(3,0),AB与EF均在x轴上.
(1)C,G两点的坐标分别为 , .
(2)将正方形ABCD绕点E顺时针旋转90°得到正方形A'B'C'D',求点C'的坐标和FC'的长.