的算术平方根是( )
A. 9 B. ±9 C. ±3 D. 3
已知:抛物线C1:y=ax2+bx+c(a>0)与x轴交于点(﹣1,0),(2,0).
(1)b、c分别用含a的式子表示为:b= ,c= ;
(2)将抛物线C1向左平移个单位,得到抛物线C2.直线y=kx+a(k>0)与C2交于A,B两点(A在B左侧).P是抛物线C2上一点,且在直线AB下方.作PE∥y轴交线段AB于E,过A、B两点分别作PE的垂线AM、BN,垂足分别为M,N.
①当P点在y轴上时,试说明:AM•BN为定值.
②已知当点P(a,n)时,恰有S△ABM=S△ABN,求当1≤a≤3时,k的取值范围.
已知:如图,四边形ABCD内接于⊙O,AB=AC,过点A作AE∥BD交CD的延长线于点E.
(1)求证:AE=DE;
(2)若∠BCD﹣∠CBD=60°,求∠ABD的度数;
(3)在(2)的条件下,若BD=21,CD=9,求AE的长.
某大型服装批发市场经销一种品牌衬衫,如果每件盈利10元,每天可售出500件.经市场调查发现,在进货价不变的情况下,若每件涨价1元,日销售量将减少20件.设每件涨价x元,
(1)当批发商总利润为5520元时,求每件衬衫涨价多少元?
(2)当x不大于a (0<a<25)时,求批发商能获得的最大利润.
如图,AB为⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E点.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=60°,求图中阴影部分的面积.
在一个不透明的盒子里装有3个标记为1、2、-3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为x后放回,同样的乙也从中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).
(1)请用列表或画树状图的方法写出点P所有可能的坐标;
(2)求点P在函数y=﹣x2+2的图象上的概率.