如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
如图,利用一面长的墙,用长的篱笆,围成一个长方形的养鸡场.
(1)怎样围成一个面积为的长方形养鸡场?
(2)能否围成一个面积为的长方形养鸡场?如能,说明围法;如不能,请说明理由.
在平面直角坐标系中,O 为原点,点 A(4,0),点 B(0,3),把△ABO 绕点 B 逆时针旋转,得△A′BO′,点 A、O 旋转后的对应点为 A′、O′,记旋转角为ɑ.
(1)如图 1,若ɑ=90°,求 AA′的长;
(2)如图 2,若ɑ=120°,求点 O′的坐标.
如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.
如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是_______.
某商场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)若该商场平均每天要赢利1200元,且让顾客尽可能得到实惠,每件衬衫应降价多少元?
(2)求该商场平均每天赢利的最大值。