如图△ABC中,∠C=90°,BC=AC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且CD=6cm,则DE的长为 ( ) .
A.9 B.3 C.12 D.6
下列各式,是分式的是( )
A. B. C. D.
a2a3=( )
A.a7 B.a9 C.a14 D.a5
计算:(-2020)0=( )
A.0 B.2020 C.1 D.-1
如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.
(1)求二次函数y=ax2+2x+c的表达式;
(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;
(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
如图,利用一面长的墙,用长的篱笆,围成一个长方形的养鸡场.
(1)怎样围成一个面积为的长方形养鸡场?
(2)能否围成一个面积为的长方形养鸡场?如能,说明围法;如不能,请说明理由.