若一元二次方程x2﹣(b﹣2)x+7=0的一次项系数为3,则b的值为( )
A.5 B.-1 C.﹣5 D.3
下列各式中,是一元二次方程的为( )
A.ax2+bx+c=0 B.x2+2x﹣3
C.x2+y2=1 D.(x﹣2)(x﹣4)=7
下列标志既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
问题情境:如图①,在直角三角形ABC中,∠BAC=90∘,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
(1)特例探究:如图②,∠MAN=90∘,射线AE在这个角的内部,点B.C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E.F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为18,求△ACF与△BDE的面积之和是多少?
常用的分解因式的方法有提取公因式法、公式法,但有更多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了,过程为:,这种分解因式的方法叫分组分解法,利用这种方法解决下列问题.
(1)分解因式:;
(2)△ABC三边a、b、c满足,判断△ABC的形状.
已知长方形的长为a,宽为b,周长为24,两边的平方和为120.
①求此长方形的面积;
②求ab3+2a2b2+a3b的值.