在中,是分式的有( )
A.个 B.个 C.个 D.个
如图,抛物线y=﹣x2+mx+2与x轴交于点A,B,与y轴交于点C,点A的坐标为(1,0)
(1)求抛物线的解析式
(2)在抛物线的对称轴l上找一点P,使PA+PC的值最小,求出点P的坐标
(3)在第二象限内的抛物线上,是否存在点M,使△MBC的面积是△ABC面积的?若存在,求出点M的坐标,若不存在,请说明理由.
(问题背景)如图1,在四边形ADBC中,∠ACB=∠ADB=90o,AD=BD, 探究线段AC,BC,CD之间的数量关系
小明同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90o到△AED处,点B,C分别 落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC= CD
(简单应用)
(1)在图1中,若AC=6,CD=,则AB= .
(2)如图3,AB是⊙O的直径,点C. D在⊙O上,∠C=45o,若AB=25,BC=24,求CD的长.
(拓展延伸)
(3)如图4,∠ACB=∠ADB=90o,AD=BD,若AC=,CD=,求BC的长.(用含,的代数式表示)
某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价元之间符合一次函数关系,其图象如图所示.
求y与x的函数关系式;
物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?
在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?