若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线“等边抛物线”.
(1)若对任意m,n,点M(m,n)和点N(-m+4,n)恒在“等边抛物线”:上,求抛物线的解析式;
(2)若抛物线:“等边抛物线”,求的值;
(3)对于“等边抛物线”:,当1<x<m吋,总存在实数b.使二次函数的图象在一次函数y=x图象的下方,求m的最大值.
如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
有一块形状如图的五边形余料,,,,,.要在这块余料中截取一块矩形材料,其中一边在上,并使所截矩形的面积尽可能大.
(1)若所截矩形材料的一条边是或,求矩形材料的面积;
(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.
市面上贩售的防晒产品标有防晒指数,而其对抗紫外线的防护率算法为:防护率,其中.
请回答下列问题:
(1)厂商宣称开发出防护率的产品,请问该产品的应标示为多少?
(2)某防晒产品文宣内容如图所示.
请根据与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.
已知抛物线y=x2﹣mx+2m﹣1必过定点H.
(1)写出H的坐标.
(2)若抛物线经过点A(0,3),求证:该抛物线恒在直线y=﹣2x﹣1上方.
求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.解答要求如下:
(1)对于图中△ABC,用尺规作出一条中位线DE;(不必写作法,但应保留作图痕迹)
(2)根据(1)中作出的中位线,写出已知,求证和证明过程.