-2的倒数是( )
A.-2 B. C. D.2
如图所示,在平面直角坐标系xOy中,有AB为斜边的等腰直角三角形ABC,其中点A(0,2),点C(﹣1,0),抛物线y=ax2+ax﹣2经过B点.
(1)求B点的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否存在点N(点B除外),使得△ACN仍然是以AC为直角边的等腰直角三角形?若存在,求点N的坐标;若不存在,请说明理由.
在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,则当天该水果的销售量 千克.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
(3)当售价定为多少元时,当天销售这种水果获利最大?最大利润是多少?
(问题背景)先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式x2﹣4>0
(问题解决)∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化为(x+2)(x﹣2)>0
由有理数的乘法法则“两数相乘,同号得正”,得
解不等式组①,得x>2,
解不等式组②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,
即一元二次不等式 x2﹣4>0 的解集为x>2或x<﹣2.
(问题应用)(1)一元二次不等式 x2﹣16>0 的解集为 ;
(2)分式不等式>0 的解集为 ;
(3)(拓展应用)解一元二次不等式 2x2﹣3x<0.
如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm; 过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求证:四边形OBEC为矩形;
(2)求矩形OBEC的面积.
(1)在直角坐标系中画出二次函数y=x2﹣x﹣的图象.
(2)若将y=x2﹣x﹣图象沿x轴向左平移2个单位,请写出平移后图象所对应的函数关系式.
(3)根据图象,写出当y>0时,x的取值范围.