阅读材料,请回答下列问题
材料一:我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:S=…①(其中a,b,c为三角形的三边长,S为面积)而另一个文明古国古希腊也有求三角形面积的“海伦公式”;S=……②(其中p=)
材料二:对于平方差公式:a2﹣b2=(a+b)(a﹣b)
公式逆用可得:(a+b)(a﹣b)=a2﹣b2,
例:a2﹣(b+c)2=(a+b+c)(a﹣b﹣c)
(1)若已知三角形的三边长分别为3、4、5,请试分别运用公式①和公式②,计算该三角形的面积;
(2)你能否由公式①推导出公式②?请试试.
已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE
(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;
(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.
国庆假期期间,某单位8名领导和320名员工集体外出进行素质拓展活动,准备租用45座大车或30座小车.若租用2辆大车3辆小车共需租车费1700元;若租用3辆大车2辆小车共需租车费1800元
(1)求大、小车每辆的租车费各是多少元?
(2)若每辆车上至少要有一名领导,每个人均有座位,且总租车费用不超过3100元,求最省钱的租车方案.
某校为了解本校八年级学生数学学习情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图,请根据图中的信息解答下列问题
(1)补全条形统计图
(2)等级为D等的所在扇形的圆心角是 度
(3)如果八年级共有学生1800名,请你估算我校学生中数学学习A等和B等共多少人?
已知:如图,P 是 OC 上一点,PD⊥OA 于 D,PE⊥OB 于 E,F、G分别是 OA、OB 上的点,且 PF=PG,DF=EG. 求证:OC 是∠AOB 的平分线.
先化简,再求值[(xy+2)(xy﹣2)﹣4(xy﹣1)2+8]÷(2xy),其中=0.