(1)如图1,等腰Rt△ABC中,∠CAB=90°,点H在BC边上,连AH,作等腰Rt△HFA,∠HFA=90°求证:AF=CF.
(2)如图2,等腰Rt△ABC中,∠CAB=90°,D在BC上,AD⊥AE,AD=AE,G为CD中点,求证:AG⊥BE
(3)如图3,等腰Rt△ABC中,∠BAC=90°,过C作CD∥AB, CD=8,连AD,在AD上取一点E使AE=AB,连BE交AC于F,若AF=9,则AD= .
已知:BF为△ABC的外角∠ABE的平分线,D为BF上一点,且AD=CD.
(1)如图1,过点D作DH⊥CE于点H,若AB=8,BC=6,求BH的长.
(2)如图2,若∠ABC=24°,∠ABD=78°,∠BAD=60°,求∠BAC的度数.
如图,在直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B (4,2),C(3,4).
(1)请画出△ABC关于y轴对称的△;
(2)△的面积为 ;
(3)在轴上求作一点P,使△PAB周长最小,请画出△PAB,并直接写出点P的坐标.
如图,在△ABC中,AB=2,BC=4,其两条外角平分线AD、CD交于点D,且∠ADC=45°,连接BD交AC于点P,过点P作PE⊥AC交BC于点F,交AB的延长线于点E.
(1)求证:∠ABC=90° ;
(2)求S△PFC:S△PBF的值.
阅读下列文字:我们知道对于一个图形,通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)= a2+3ab+2b2.请解答下列问题:
(1)写出图2中所表示的数学等式 ;
(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=29,求a 2+b2+c2的值;
(3)小明同学打算用x张边长为a和y张边长为b的小正方形,z张相邻两边长分别为a、b的长方形纸片拼出了一个面积为(3a+5b)(4a+7b)的长方形,那么他总共需要多少张纸片?
如图,点E、F在BC上,BE=CF,EG=GF,∠B=∠C,AF与DE交于点G,求证:AB=DC.