如图,已知抛物线y=ax2+4x+c经过A(2,0)、B(0,﹣6)两点,其对称轴与x轴交于点C.
(1)求该抛物线和直线BC的解析式;
(2)设抛物线与直线BC相交于点D,求△ABD的面积;
(3)在该抛物线的对称轴上是否存在点Q,使得△QAB的周长最小?若存在,求出Q点的坐标及△QAB最小周长;若不存在,请说明理由.
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.
已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.
(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
(2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
(3)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B3.
如图,已知⊙O的弦AB,E,F是弧AB上两点,弧AE=弧BF,OE、OF分别交于AB于C、D两点,求证:AC=BD.
解方程.
(1)2x2﹣6x﹣1=0;
(2)2y(y+2)﹣y=2.