“我要上春晚”进入决赛阶段,最终将有甲、乙、丙、丁4名选手进行决赛的终极较量,决赛分3期进行,每期比赛淘汰1名选手,最终留下的歌手即为冠军.假设每位选手被淘汰的可能性都相等.
(1)甲在第1期比赛中被淘汰的概率为 ;
(2)用树状图法或表格法求甲在第2期被淘汰的概率.
如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有_____个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是_____.
圆O的半径为,点M的坐标为(m,3),若在圆O上存在一点N, 以M、N为正方形的两个顶点,且正方形的边均与两条坐标轴垂直,则m的最小值为_________
某航班每次飞行约有100名乘客,若飞机失事的概率为p=0.000 05,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿40万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.
如图,将大小两块量角器的零度线对齐,且小量角器的中心O2恰好在大量角器的圆周上。设它们圆周的交点为P,且点P在小量角器上对应的刻度为75∘,那么点P在大量角器上对应的刻度为_______________
如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .