某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.
(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;
(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?
我们规定:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理【解析】
(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);
(2)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时PQ的长和点Q的坐标
如图,直线y=2x+6与反比例数y=(x>0)的图象交于点A(1,m),与x轴交于点B,与y轴交于点D.
(1)求m的值和反比例函数的表达式;
(2)观察图像,直接写出不等式2x+6->0的解集
(3)在反比例函数图像的第一象限上有一动点M,当S△BOM<S△BOD 时,直接写出点M纵坐标的的取值范围。
如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.
(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;
(Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.
在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与y轴交于点A,与x轴交于点B、C(B在C的左侧)
(1)求点A的坐标和对称轴
(2)若∠ACB=45°,求此抛物线的表达式;
(3)在(2)的条件下,对称轴上是否存在一点P,使△PAB的周长最小?若存在,求出P点坐标和△PAB的周长,若不存在,请说明理由。
“我要上春晚”进入决赛阶段,最终将有甲、乙、丙、丁4名选手进行决赛的终极较量,决赛分3期进行,每期比赛淘汰1名选手,最终留下的歌手即为冠军.假设每位选手被淘汰的可能性都相等.
(1)甲在第1期比赛中被淘汰的概率为 ;
(2)用树状图法或表格法求甲在第2期被淘汰的概率.