的倒数是 _____________.
若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”
(1)请判断一次函数y=﹣3x+5和二次函数y=x2﹣4x+5是否为“丘比特函数组”,并说明理由.
(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y=ax2+bx+c顶点在二次函数y=2x2﹣3x﹣4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;
(3)当﹣3≤x≤﹣1时,二次函数y=x2﹣2x﹣4的最小值为a,若“丘比特函数组”中的一次函数y=2x+3和二次函数y=ax2+bx+c(b、c为参数)相交于PQ两点请问PQ的长度为定值吗?若是,请求出该定值;若不是,请说明理由.
有两个内角分别是它们对角的一半的四边形叫做半对角四边形
(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C的度数之和;
(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;
(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G,当DH=BG=2时,求⊙O的直径.
某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.
(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;
(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?
我们规定:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理【解析】
(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);
(2)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时PQ的长和点Q的坐标
如图,直线y=2x+6与反比例数y=(x>0)的图象交于点A(1,m),与x轴交于点B,与y轴交于点D.
(1)求m的值和反比例函数的表达式;
(2)观察图像,直接写出不等式2x+6->0的解集
(3)在反比例函数图像的第一象限上有一动点M,当S△BOM<S△BOD 时,直接写出点M纵坐标的的取值范围。