在平面直角坐标系中,点P的坐标为(a -2,3 a )在第二象限,则字母a的取值范围是( )
A.a>0 B.a <2 C.0<a<2 D.a>2
如图,点A表示某个村庄,BC表示一条公路,现要开一条路直接由A村到公路BC,并使得费用最低,这样做的依据是( )
A.两点之间,线段最短
B.垂线段最短
C.过一点有且只有一条直线和已知直线垂直
D.两点确定一条直线
要调查下列问题,你认为哪些适合抽样调查( )
①检测太原市的空气质量;②调查全省中学生的视力情况;③市场上某种食品的添加剂含量是否符合国家标准;④检测C919大型客机零部件的质量.
A.①② B.③④ C.①②③ D.①②④
下列计算正确的是( )
A.= - B.=2 C. D.
问题:(1)如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 ;
探索:(2)如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;
应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.
如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.