满分5 > 初中数学试题 >

已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0. (1)求...

已知抛物线y=mx2+2mx+m-1和直线y=mx+m-1,且m≠0

1)求抛物线的顶点坐标;

2)试说明抛物线与直线有两个交点;

3)已知点Tt0),且-1≤t≤1,过点Tx轴的垂线,与抛物线交于点P,与直线交于点Q,当0m≤3时,求线段PQ长的最大值.

 

(1)(-1,-1);(2)见解析;(3)PQ的最大值为6. 【解析】 (1)化为顶点式即可求顶点坐标; (2)由y=mx2+2mx+m-1和y=mx+m-1可得:mx2+2mx+m-1=mx+m-1,整理得,mx(x+1)=0,即可知抛物线与直线有两个交点; (3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点,点P的坐标为(t,mt2+2mt+m-1),点Q的坐标为(t,mt+m-1). 故分两种情况进行讨论:①如图1,当-1≤t≤0时;②如图2,当0<t≤1时,求出对应的最大值即可. 【解析】 (1)∵y=mx2+2mx+m-1=m(x+1)2-1, ∴抛物线的顶点坐标为(-1,-1). (2)由y=mx2+2mx+m-1和y=mx+m-1可得:mx2+2mx+m-1=mx+m-1, mx2+mx=0,mx(x+1)=0, ∵m≠0, ∴x1=0,x2=-1. ∴抛物线与直线有两个交点. (3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点, 点P的坐标为(t,mt2+2mt+m-1),点Q的坐标为(t,mt+m-1). ①如图1,当-1≤t≤0时,PQ==. ∵m>0, 当时,PQ有最大值,且最大值为. ∵0<m≤3,∴≤,即PQ的最大值为. ②如图2,当0<t≤1时,PQ==. ∵m>0, ∴当t=1时,PQ有最大值,且最大值为2m. ∵0<m≤3, ∴0<2m≤6,即PQ的最大值为6. 综上所述,PQ的最大值为6.
复制答案
考点分析:
相关试题推荐

在平面直角坐标系xOy中,抛物线yax22ax3a0)与x轴交于AB两点(点A在点B左侧).

1)求抛物线的对称轴;

2)若AB4,求该抛物线的解析式;

3)若AB4,直接写出a的取值范围.

 

查看答案

如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,

(1)求证:BE=CF ;

(2)当四边形ACDE为菱形时,求BD的长

 

查看答案

某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.

1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?

2)若墙体长度为20米,问长方形面积最大是多少?

 

查看答案

如图,二次函数的图像与坐标轴交于点A1 0)和点C.经过点A的直线与二次函数图像交于另一点B,点B与点C关于二次函数图像的对称轴对称.

1)求一次函数表达式;

2)点P在二次函数图像的对称轴上,当ACP的周长最小时,请求出点P的坐标.

 

查看答案

已知抛物线y=﹣x2+bx+c的部分图象如图所示.

(1)bc的值;

(2)y的最大值;

(3)写出当y0时,x的取值范围.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.