由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
如图,二次函数y=﹣x2+x+6与x轴相交A,B两点,与y轴相交于点C.
(1)若点E为线段BC上一动点,过点E作x轴的垂线与抛物线交于点P,垂足为F,当PE﹣2EF取得最大值时,在抛物线y的对称轴上找点M,在x轴上找点N,使得PM+MN+NB的和最小,若存在,求出该最小值及点N的坐标;若不存在,请说明理由.
(2)在(1)的条件下,若点P′为点P关于x轴的对称点,将抛物线y沿射线BP′的方向平移得到新的抛物线y′,当y′经过点A时停止平移,将△BCN沿CN边翻折,点B的对应点为点B′,B′C与x轴交于点K,若抛物线y′的对称轴上有点R,在平画内有点S,是否存在点R、S使得以K、B′、R、S为顶点的四边形是菱形,若存在,直接写出点S的坐标;若不存在,请说明理由.
如图,四边形ABCD为菱形,∠BCD=60°,E为对角线AC上一点,且AE=AB,F为CE的中点,接DF、BF,BG⊥BF与AC交于点G;
(1)若AB=2,求EF的长;
(2)求证:CG﹣EF=BG.
国庆期间电影《我和我的祖国》上映,在全国范围内掀起了观影狂潮.小王一行5人相约观影,由于票源紧张,只好选择3人去A影院,余下2人去B影院,已知A影院的票价比B影院的每张便宜5元,5张影票的总价格为310元.
(1)求A影院《我和我的祖国》的电影票为多少钱一张;
(2)次日,A影院《我和我的祖国》的票价与前一日保持不变,观影人数为4000人.B影院为吸引客源将《我和我的祖国》票价调整为比A影院的票价低a%但不低于50元,结果B影院当天的观影人数比A影院的观影人数多了2a%,经统计,当日A、B两个影院《我和我的祖国》的票房总收入为505200元,求a的值.
某数学兴趣小组根据学习函数的经验,对分段函数y=的图象与性质进了探究,请补充完整以下的探索过程.
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | ﹣1 | 0 | 1 | 0 | ﹣3 | … |
(1)填空:a= .b= .
(2)①提上述表格补全函数图象;②该函数图象是关于 对称的 (横线上填轴对称或中心对称)图形.
(3)若直线y=x+t与该函数图象有三个交点,直接写出t的取值范围.
对于任意一个自然数N,将其各个数位上的数字相加得到一个数,我们把这一过程称为一次操作,把这个得到的数进行同样的操作,不断进行下去,最终会得到一个一位数K,我们把K称为N的“终极数”,并记f(N)=K.例如,456→4+5+6=15→1+5=6,∴f(456)=6.
(1)计算:f(2019)= .f(20192020)= .
(2)有一个三位自然数M=,已知f(M)=4,且x<y<z,请求出所有满足条件的自然数M.