满分5 > 初中数学试题 >

(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点...

1)如图(1),已知:在△ABC中,∠BAC90°AB=AC,直线m经过点ABD⊥直线m, CE⊥直线m,垂足分别为点DE.证明:DE=BD+CE.

2)如图(2),将(1)中的条件改为:在△ABC中,AB=ACDAE三点都在直线m,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

3)拓展与应用:如图(3),DEDAE三点所在直线m上的两动点(DAE三点互不重合),F∠BAC平分线上的一点,△ABF△ACF均为等边三角形,连接BDCE,∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

 

(1)见解析(2)成立(3)△DEF为等边三角形 【解析】 【解析】 (1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900. ∵∠BAC=900,∴∠BAD+∠CAE=900. ∵∠BAD+∠ABD=900,∴∠CAE=∠ABD. 又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE. ∴DE="AE+AD=" BD+CE. (2)成立.证明如下: ∵∠BDA =∠BAC=,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—.∴∠DBA=∠CAE. ∵∠BDA=∠AEC=,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE. ∴DE=AE+AD=BD+CE. (3)△DEF为等边三角形.理由如下: 由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE, ∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600. ∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE. ∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE. ∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600. ∴△DEF为等边三角形. (1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE. (2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD. (3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.  
复制答案
考点分析:
相关试题推荐

为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

 

查看答案

如图,在△ABC中,AB=CB,∠ABC=90°DAB延长线上一点,点EBC边上,且BE=BD,连结AEDEDC

①求证:△ABE≌△CBD

②若∠CAE=30°,求∠BDC的度数.

 

查看答案

先化简,再求值:,其中x=4

 

查看答案

解方程:

(1);(2)

 

查看答案

如图,△ABC中,DEAC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.