如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.
(1)要使鸡场面积最大,鸡场的长度应为多少m?
(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?
比较(1)(2)的结果,你能得到什么结论?
已知:m,n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0),B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积.
如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6,求DE的长.
如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点A的坐标为(1,0),点B是点C关于该函数图象对称轴对称的点.
(1)求二次函数的解析式;
(2)求点B的坐标.
已知点A(m,m+1),B(m+3,m﹣1)都在反比例函数y=的图象上,求m的值及反比例函数的解析式.
已知:如图,△ABC中,∠BAC=90°,AB=AC,点D是BC边上的一个动点(不与B,C重合),∠ADE=45°.求证:△ABD∽△DCE.