经过平移得到,并且与,与是对应点,,则______,与的关系是______,与的关系是______.
我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC的内心.
(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;
(2)如图2,过点I作直线交AB于点M,交AC于点N.
①若MN⊥AI,求证:MI2=BM•CN;
②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求的值.
我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
z | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 10 | 10 |
(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;
(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;
(3)当x为何值时,月利润w有最大值,最大值为多少?
如图,已知,在锐角中,于点E,点D在边AC上,联结BD交CE于点F,且.
求证:;
联结AF,求证:.
有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象平行于x轴的直线y=m与图象“G”的交点的个数情况.
如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)交于点A(4,1)与点B(﹣1,n).
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.