如图,二次函数的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是( )
A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4
若反比例函数的图象经过点,则k的值为
A.5 B. C.6 D.
(1)问题发现:如图1,在等边中,点为边上一动点,交于点,将绕点顺时针旋转得到,连接.则与的数量关系是_____,的度数为______.
(2)拓展探究:如图2,在中,,,点为边上一动点,交于点,当∠ADF=∠ACF=90°时,求的值.
(3)解决问题:如图3,在中,,点为的延长线上一点,过点作交的延长线于点,直接写出当时的值.
参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … |
| |||
… | 1 | 2 | 4 | -4 | -2 | -1 | … |
| |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
|
描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:
(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当时,随的增大而______;(“增大”或“减小”)
②的图象是由的图象向______平移______个单位而得到的;
③图象关于点______中心对称.(填点的坐标)
(3)函数与直线交于点,,求的面积.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
某校数学兴趣小组的同学测量一架无人飞机P的高度,如图,A,B两个观测点相距,在A处测得P在北偏东71°方向上,同时在B处测得P在北偏东35°方向上.求无人飞机P离地面的高度.(结果精确到1米,参考数据:,,sin71°≈0.95,tan71°≈2.90)