的平方根是( )
A.-5 B.±5 C.5 D.25
如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,点E的坐标分别为(0,1),对称轴交BE于点F.
(1)求该抛物线的表达式;
(2)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
如图,夜晚,小华利用路灯A测量建筑物GF的高度,他在点D处竖立了一根木杆CD,测得木杆CD的影长DE=1.5m,AB⊥EG,CD⊥EG,GF⊥EG.
(1)在图中画出表示建筑物GF影子的线段GH;
(2)已知木杆的高CD=2m,建筑物GF的影子GH=7.8m,木杆CD与路灯杆AB之间的距离BD=5.85m,路灯杆AB与建筑物GF之间的距离BG=6.9m,请你根据题中提供的相关信息,求出建筑物GF的高度.
如图,在矩形ABCD中,AC为对角线,过点B作BF⊥AC于点F,延长BF交AD于点E,交CD的延长线于点G.
(1)求证:△ABF∽△EGD;
(2)若CD=5,DG=3,求tan∠GBC的值.
某校举行“元旦”联欢晚会,其中有一个转转盘抽奖环节,有两名幸运观众分别转动如图所示的转盘各一次(转盘被分成四个相等的扇形区域,分别写有“兔子玩偶”、“熊猫玩偶”、“猴子玩偶”、“才艺表演”),转盘停止后(指针指在分界线时重转),若指针指向某种玩偶,则获得相应的玩偶,若指针指向才艺表演,则要在舞台上进行才艺表演且没有任何奖品,小娟和小寒是这两名幸运观众,用树状图或列表的方法求小娟和小寒均要进行才艺表演的概率.
某政府在广场上树立了如图所示的宣传牌,数学兴趣小组的同学想利用所学的知识测量宣传牌的高度AB,在D处测得点A、B的仰角分别为38°、21°,已知CD=20m,点A、B、C在一条直线上,AC⊥DC,求宣传牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,结果精确到1米)