某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?
(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?
如图,在中,,,,动点P从点A开始沿边AB向B以的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以的速度移动(不与点C重合),如果P、Q分别从A、B同时出发,设运动的时间为,四边形APQC的面积为.
(1)求y与x之间的函数关系式;写出自变量x的取值范围;
(2)当四边形APQC的面积等于时,求x的值;
(3)四边形APQC的面积能否等于?若能,求出运动的时间,若不能,说明理由.
如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,在点A处有一栋居民楼,AO=320m,如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN上沿ON方向行驶时.
(1)居民楼是否会受到噪音的影响?请说明理由;
(2)如果行驶的速度为72km/h,居民楼受噪音影响的时间为多少秒?
如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是.求:
(1)铅球在行进中的最大高度;
(2)该男生将铅球推出的距离是多少m?
“圆材埋壁”是我国古代著名的数学著作《九章算数》中的一个问题,”今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何? 用现在的数学语言表述是:如图,CD为⊙O的直径,弦AB⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”.
已知关于x的一元二次方程有两个不相等的实数根.
(1)求k的取值范围;
(2)若此方程的两实数根,满足,求k的值.