一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?
已知,如图,AB 是⊙O 的直径,CD 是弦,CD⊥AB 于点 E,点 G 在直径 DF 的延 长线上,∠D=∠G=30°.
(1)求证:CG 是⊙O 的切线;
(2)若 CD=6,求 GF 的长.
如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.
用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.
某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.
按要求画图:①仅用无刻度的直尺;②保留必要的画图痕迹.
(1)如图1,画出⊙O的一个内接矩形;
(2)如图2,AB是⊙O的直径,CD是⊙O的弦,且CD∥AB,画出⊙O的一个内接正方形.