已知:如图1,矩形OABC的两个顶点A,C分别在x轴,y轴上,点B的坐标是(8,2),点P是边BC上的一个动点,连接AP,以AP为一边朝点B方向作正方形PADE,连接OP并延长与DE交于点M,设CP=a(a>0).
(1)请用含a的代数式表示点P,E的坐标.
(2)连接OE,并把OE绕点E逆时针方向旋转90°得EF.如图2,若点F恰好落在x轴的正半轴上,求a与的值.
(3)①如图1,当点M为DE的中点时,求a的值.
②在①的前提下,并且当a>4时,OP的延长线上存在点Q,使得EQ+PQ有最小值,请直接写出EQ+PQ的最小值.
定义:在△ABC中,点D,E,F分别是边AB,BC,CA上的动点,若△DEF∽△ABC(点D、E、F的对应点分别为点A、B、C),则称△DEF是△ABC的子三角形,如图.
(1)已知:如图1,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA上动点,且AD=BE=CF.
求证:△DEF是△ABC的子三角形.
(2)已知:如图2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CF和AD的长.
如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点.
(1)求抛物线y=﹣x2+bx+c的解析式.
(2)在第二象限内取一点C,作CD⊥x轴于点D,连接AC,且AD=1,CD=5,将Rt△ACD沿x轴向右平移m个单位.
①当点C第一次落在抛物线上时,求m的值.
②当△ACD与抛物线y=﹣x2+bx+c的图象有交点时,求m的取值范围(直接答案即可)
如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.
(1)求证:AF=DF.
(2)求阴影部分的面积(结果保留π和根号)
如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).
某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.销售价为每千克60元时,一天能销售80千克,经市场调查,该商品每涨价1元,一天销售量就减少2千克,设该商品的售价涨了x元,每天销售该商品的总利润为y元.
(1)求y与x之间的函数表达式;
(2)当x为多少时每天总利润y最大,最大利润是多少?