如图,在△ABC中,点E,F分别为BC上的点,EF=,∠BAC=135°,∠EAF=90°,tan∠AEF=1.
(1)若1<BE<2,求CF的取值范围;
(2)若AB=,求△ACF的面积.
在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.
(1)根据题意,袋中有 个蓝球.
(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).
已知关于x的一元二次方程.
(1)求证:方程总有两个实数根;
(2)若方程有一根为正数,求实数k的取值范围.
先化简,再求值(x+1)2-(x+2)(x-2),其中,且x为整数.
二次函数的图象上有三个点,分别为A(﹣2,y1),B(﹣1,y2),C(1,y3),则y1,y2,y3的大小关系是______.
有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度. 图2是支撑杆的平面示意图,AB和CD分别是两根不同长度的支撑杆,夹角∠BOD=. 若AO=85cm,BO=DO=65cm. 问: 当,较长支撑杆的端点离地面的高度约为_____.(参考数据:,.)