二次函数的最小值是 ( )
A. 2 B. 2 C. 1 D. 1
下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
已知二次函数y=x2+bx+c(b,c为常数).
(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;
(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;
(Ⅲ)当c=5时,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣5,求b的值
如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.
(Ⅰ)求证:∠A=∠EBC;
(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.
某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?
设每件商品降价x元.每天的销售额为y元.
(I) 根据问题中的数量关系.用含x的式子填表:
| 原价 | 每件降价1元 | 每件降价2元 | … | 每件降价x元 |
每件售价(元) | 35 | 34 | 33 | … |
|
每天售量(件) | 50 | 52 | 54 | … |
|
(Ⅱ)(由以上分析,用含x的式子表示y,并求出问题的解)
已知⊙O中,弦AB⊥AC,且AB=AC=6,点D在⊙O上,连接AD,BD,CD.
(1)如图1,若AD经过圆心O,求BD,CD的长;
(2)如图2,若∠BAD=2∠DAC,求BD,CD的长.