满分5 > 初中数学试题 >

春节即将来临,某企业接到一批礼品生产任务,约定这批礼品的出厂价为每件6元,按要求...

春节即将来临,某企业接到一批礼品生产任务,约定这批礼品的出厂价为每件6元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人小王第x天生产的礼品数量为y件,yx满足如下关系:y.

1)小王第几天生产的礼品数量为390件?

2)如图,设第x天生产的每件礼品的成本是z元,zx之间的关系可用图中的函数图象来刻画.若小王第x天创造的利润为w元,求wx之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)

 

(1)第12天生产的礼品数量为390只;(2)w与x的函数表达式为w=,第18天利润最大,最大利润为1188元. 【解析】 (1)因为前6天最多可生产礼品240只,所以把y=390代入y=25x+90,解方程即可求得; (2)先根据图象求得成本z与x之间的关系,然后根据利润等于出厂价减去成本价,分0≤x≤6,6<x≤10,10<x≤20三种情况讨论,再根据一次函数的增减性和二次函数的增减性解答. (1)∵6×40=240, ∴前六天中第6天生产的礼品最多达到240只, 将390代入y=25x+90得:25x+90=390, ∴x=12, 答:第12天生产的礼品数量为390只; (2)当0≤x<10时,z=3, 当10≤x≤20时,设z=kx+b,将(10,3)和(20,4)代入, 得 解得:, ∴z=x+2; 当0≤x≤6时,w=(6﹣3)×40x=120x,w随x的增大而增大, ∴当x=6时最大值为720元; 当6<x≤10时,w=(6﹣3)×(25x+90)=75x+270,w随x的增大而增大, ∴当x=10时最大值为1020元; 当10<x≤20时,w=(6﹣x﹣2)(25x+90)=﹣x2+91x+360, ∵对称轴为:直线x=18,天数为整数, ∴将x=18代入得w=1188元; 综上所述,w与x的函数表达式为w=, 答:第18天利润最大,最大利润为1188元.
复制答案
考点分析:
相关试题推荐

已知一次函数ykx+b和反比例函数y图象相交于A24),Bn,﹣2)两点.

1)求一次函数和反比例函数的解析式;

2)观察图象,直接写出不等式kx+b0的解集;

3)点Cab),Dac)(a2)分别在一次函数和反比例函数图象上,且满足CD2,求a的值.

 

查看答案

在一次数学综合实践活动中,同学们测量了学校教学楼的高度.如图,CD是高为2m的平台,在D处测得楼顶B的仰角为45°,从平台底部向教学楼方向前进4m到达E处,测得楼顶B的仰角为60°.求教学楼AB的高度(结果保留根号).

 

查看答案

现如今,垃圾分类已逐渐推广.如图,垃圾一般可分为:可回收物,厨余垃圾,有害垃圾,其它垃圾.甲拿了一袋有害垃圾,乙拿了一袋厨余垃圾,随机扔进并排的4个垃圾桶.

1)直接写出甲扔对垃圾的概率;

2)用列表或画树形图的方法求甲、乙两人同时扔对垃圾的概率.

 

查看答案

如图,在平面直角坐标系中,已知点A20),点B13).

1)画出将△OAB绕原点顺时针旋转90°后所得的△OA1B1,并写出点A1B1的坐标;

2)画出△OAB关于原点O的中心对称图形△OA2B2,并写出点A2B2的坐标.

 

查看答案

解方程:x2+2x30(公式法)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.