满分5 > 初中数学试题 >

数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周...

数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:

定义概念:

顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M所对的一个圆外角.

1)请在图2中画出所对的一个圆内角;

提出猜想:

2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角     这条弧所对的圆周角;一条弧所对的圆内角     这条弧所对的圆周角;(填“大于”、“等于”或“小于”)

推理证明:

3)利用图1或图2,在以上两个猜想中任选一个进行证明;

问题解决:

经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.

4)如图3FH是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)

 

(1)见解析(2)小于;大于(3)见解析(4)见解析 【解析】 (1)在⊙O内任取一点M,连接AM,BM; (2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角,此问得解; (3)(i)BM与⊙O相交于点C,连接AC,利用三角形外角的性质可得出∠ACB=∠M+∠MAC,进而可证出∠ACB>∠M;(ii)延长BM交⊙O于点C,连接AC,利用三角形外角的性质可得出∠AMB=∠ACB+∠CAM,进而可证出∠AMB>∠ACB; (4)由(2)的结论,可知:当过点F,H的圆与DE相切时,切点即为所求的点P. (1)如图2所示. (2)观察图形,可知:一条弧所对的圆外角小于这条弧所对的圆周角;一条弧所对的圆内角大于这条弧所对的圆周角. 故答案为小于;大于. (3)证明:(i)如图1,BM与⊙O相交于点C,连接AC. ∵∠ACB=∠M+∠MAC, ∴∠ACB>∠M; (ii)如图4,延长BM交⊙O于点C,连接AC. ∵∠AMB=∠ACB+∠CAM, ∴∠AMB>∠ACB. (4)如图3,当过点F,H的圆与DE相切时,切点即为所求的点P.
复制答案
考点分析:
相关试题推荐

如图,ABAC分别是半⊙O的直径和弦,ODAC于点D,过点A作半⊙O的切线APAPOD的延长线交于点P.连接PC并延长与AB的延长线交于点F

1)求证:PC是半⊙O的切线;

2)若∠CAB=30°AB=10,求线段BF的长.

 

查看答案

体育测试时,九年级一名男生,双手扔实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处A点距离地面的高度为2m,当球运行的水平距离为6m时,达到最大高度5mB处(如图),问该男生把实心球扔出多远?(结果保留根号)

 

查看答案

在平面直角坐标系xOy中,抛物线C1y=﹣x2+2x

(1)补全表格:

抛物线

顶点坐标

x轴交点坐标

y轴交点坐标

y=﹣x2+2x

(1,1)

     

     

(0,0)

 

(2)将抛物线C1向上平移3个单位得到抛物线C2,请画出抛物线C1C2,并直接回答:抛物线C2x轴的两交点之间的距离是抛物线C1x轴的两交点之间距离的多少倍

 

查看答案

如图,点A的坐标为(3, 2),点B的坐标为(3, 0). 作如下操作:①以点A为旋转中心,把ABO顺时针旋转90°,得到ACD;

(1)在图中画出ACD;

(2)①请直接写点B旋转到点C的路径长:____________

②画出ABO关于点O的中心对称图形EOF.

 

查看答案

已知二次函数.

1)用配方法将二次函数的表达式化为的形式;

2)在平面直角坐标系中,画出这个二次函数的图象;

3)根据(2)中的图象,写出一条该二次函数的性质.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.