已知△ACB中,∠C=90°,以点A为中心,分别将线段AB, AC 逆时针旋转60°得到线段AD, AE,连接DE,延长DE交CB于点F.
(1)如图1,若∠B=30°,∠CFE的度数为_________;
(2)如图2,当30°<∠B<60°时,
①依题意补全图2;
②猜想CF与AC的数量关系,并加以证明.
在平面直角坐标系xOy中,抛物线y=mx2-2mx +m-4 (m≠0)的顶点为A,与x轴交于B,C两点(B在点C左侧),与y轴交于点D.
(1)求点A的坐标;
(2)若BC=4,
①求抛物线的解析式;
②将抛物线在C,D之间的部分记为图象G (包含C,D两点) . 若过点A的直线y= kx+ b(k≠0)与图象G有两个交点,结合函数的图象,求k的取值范围.
数学课上学习了圆周角的概念和性质:“顶点在圆上,两边与圆相交”,“同弧所对的圆周角相等”,小明在课后继续对圆外角和圆内角进行了探究.下面是他的探究过程,请补充完整:
定义概念:
顶点在圆外,两边与圆相交的角叫做圆外角,顶点在圆内,两边与圆相交的角叫做圆内角.如图1,∠M为所对的一个圆外角.
(1)请在图2中画出所对的一个圆内角;
提出猜想:
(2)通过多次画图、测量,获得了两个猜想:一条弧所对的圆外角 这条弧所对的圆周角;一条弧所对的圆内角 这条弧所对的圆周角;(填“大于”、“等于”或“小于”)
推理证明:
(3)利用图1或图2,在以上两个猜想中任选一个进行证明;
问题解决:
经过证明后,上述两个猜想都是正确的,继续探究发现,还可以解决下面的问题.
(4)如图3,F,H是∠CDE的边DC上两点,在边DE上找一点P使得∠FPH最大.请简述如何确定点P的位置.(写出思路即可,不要求写出作法和画图)
如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.
(1)求证:PC是半⊙O的切线;
(2)若∠CAB=30°,AB=10,求线段BF的长.
体育测试时,九年级一名男生,双手扔实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如果球出手处A点距离地面的高度为2m,当球运行的水平距离为6m时,达到最大高度5m的B处(如图),问该男生把实心球扔出多远?(结果保留根号)
在平面直角坐标系xOy中,抛物线C1:y=﹣x2+2x.
(1)补全表格:
抛物线 | 顶点坐标 | 与x轴交点坐标 | 与y轴交点坐标 | |
y=﹣x2+2x | (1,1) |
|
| (0,0) |
(2)将抛物线C1向上平移3个单位得到抛物线C2,请画出抛物线C1,C2,并直接回答:抛物线C2与x轴的两交点之间的距离是抛物线C1与x轴的两交点之间距离的多少倍.