的相反数是( )
A. -3 B. 3 C. - D.
如图,已知直线经过点,交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.
当时,求证:;
连接CD,若的面积为S,求出S与t的函数关系式;
在运动过程中,直线CF交x轴的负半轴于点G,是否为定值?若是,请求出这个定值;若不是,请说明理由.
如图,点D是△ABC的边BC上的一点,∠B=∠BAD=∠C,∠ADC=72°.试求∠DAC的度数.
某玩具厂工人的工作时间:每月25天,每天8小时.待遇:按件计酬.多劳多得,每月另加福利工资100元,按月结算.该厂生产A,B两种产品,工人每生产一件A产品,可得报酬元,每生产一件B产品,可得报酬元.下表记录的是工人小李的工作情况:
生产A产品的数量件 | 生产B声品的数量件 | 总时间分钟 |
1 | 1 | 35 |
3 | 2 | 85 |
根据上表提供的信息,请回答下列问题:
小李每生产一件A产品、每生产一件B产品,分别需要多少分钟?
设小李某月生产A产品x件,该月工资为y元,求y与x的函数表达式.
如果生产各种产品的数目没有限制,那么小李该月的工资最多为多少?
某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
根据图示填写下表:
| 平均数分 | 中位数分 | 众数分 |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.
如图,,,,试求的大小.