如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.
(1)求证:△ADP≌△ECP;
(2)若BP=n•PK,试求出n的值;
(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.
如图,点A是反比例函数y=与一次函数y=﹣x﹣k在第二象限内的交点,AB⊥x轴于点B,且S△ABO=3.
(1)求这两个函数的表达式;
(2)求一次函数与反比例函数的两个交点A,C的坐标和△AOC的面积.
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
如图,某校数学学习小组在点C处测得一棵倾斜的大树AB顶部点A的仰角为45°.已知大树与地面的夹角是60°,B,C两点间距离为18米.请你求出大树的高AB的值(结果保留根号).
如图,在Rt△ABC中∠C=90°,BC=7cm.动点P在线段AC上从点C出发,沿CA方向运动;动点Q在线段BC上同时从点B出发,沿BC方向运动.如果点P,Q的运动速度均为lcm/s,那么运动几秒时,它们相距5cm.
(1)计算:+()﹣2﹣(﹣2019)0﹣2cos45°;
(2)解方程:x(x+2)=3x+6.