满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D...

如图,在△ABC中,ABAC2,∠B=∠C40°,点D在线段BC上运动(D不与BC重合),连接AD,作∠ADE40°,DE交线段ACE

1)当∠BDA115°时,∠EDC     °,∠DEC     °;点DBC运动时,∠BDA逐渐变     (填“大”或“小”);

2)当DC等于多少时,△ABD≌△DCE,请说明理由;

3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.

 

(1)25°,115°,小;(2)当DC=2时,△ABD≌△DCE,见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,见解析 【解析】 (1)根据∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°﹣∠ADB﹣∠ADE,进而求出∠DEC的度数, (2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE, (3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形. 【解析】 (1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°, ∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°, ∠BDA逐渐变小; 故答案为:25°,115°,小; (2)当DC=2时,△ABD≌△DCE, 理由:∵∠C=40°, ∴∠DEC+∠EDC=140°, 又∵∠ADE=40°, ∴∠ADB+∠EDC=140°, ∴∠ADB=∠DEC, 又∵AB=DC=2, ∴△ABD≌△DCE(AAS), (3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形, 理由:∵∠BDA=110°时, ∴∠ADC=70°, ∵∠C=40°, ∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°, ∴∠DAC=∠AED, ∴△ADE的形状是等腰三角形; ∵当∠BDA的度数为80°时, ∴∠ADC=100°, ∵∠C=40°, ∴∠DAC=40°, ∴∠DAC=∠ADE, ∴△ADE的形状是等腰三角形.
复制答案
考点分析:
相关试题推荐

如图,∠AOB90°,点CD分别在射线OAOB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F

1)当∠OCD56°(如图①),试求∠F

2)当CD在射线OAOB上任意移动时(不与点O重合)(如图②),∠F的大小是否变化?若变化,请说明理由若不变化求出∠F

 

查看答案

如图,已知DBC的中点,过点DBC的垂线交∠BAC的平分线于点E,EF⊥AB于点F,EG⊥AC于点G.

(1)求证:BF=CG;

(2)若AB=10,AC=6,求线段CG的长.

 

查看答案

已知命题等腰三角形两腰上的高线长相等

1)请写出该命题的逆命题;

2)判断(1)中命题的真假,并画出图形,补充已知,求证,及证明过程.

图形:

已知:在ABC中,CDABBEAC,且______

求证:______

证明:

 

查看答案

1)如果两个三角形两边和其中一边所对的角相等,则两个三角形全等,这是一个假命题,请画图举例说明;

2)如图,在ABCDEF中,ABEDBCDF,∠BAC=∠DEF120°,求证:ABC≌△EDF

 

查看答案

如图:

1)作出与ABC关于x轴对称的图形A1B1C1

2)若图中一个小正方形边长为一个单位长度,请写出各点的坐标:

A1     B1     C1     

3)求A1B1C1的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.