已知,如图,有一块含有30°的直角三角形的直角边的长恰与另一块等腰直角三角形的斜边的长相等.把该套三角板放置在平面直角坐标系中,且
(1)若某开口向下的抛物线的顶点恰好为点,请写出一个满足条件的抛物线的解析式.
(2)若把含30°的直角三角形绕点按顺时针方向旋转后,斜边恰好与轴重叠,点落在点,试求图中阴影部分的面积(结果保留)
如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2.
(1)小球飞行时间是多少时,小球最高?最大高度是多少?
(2)小球飞行时间t在什么范围时,飞行高度不低于15m?
如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.
(1)求证:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的长.
如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为6,∠A=35°,求的长.
己知反比例函数常数,.
(1)若点在这个函数的图象上,求的值;
(2)若,试判断点是否在这个函数的图象上,并说明理由.
如图,已知锐角△ABC
(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.