满分5 > 初中数学试题 >

如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余...

如果三角形的两个内角αβ满足2α+β=90°,那么我们称这样的三角形为准互余三角形”.

(1)若ABC准互余三角形”,C>90°,A=60°,则∠B=     °;

(2)如图①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明ABD准互余三角形.试问在边BC上是否存在点E(异于点D),使得ABE也是准互余三角形?若存在,请求出BE的长;若不存在,请说明理由.

(3)如图②,在四边形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC准互余三角形,求对角线AC的长.

 

(1)15°;(2)BE=.(3)AC=20. 【解析】 (1)根据“准互余三角形”的定义构建方程即可解决问题; (2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题; (3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可; (1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°, ∴2∠B+∠A=90°, 解得,∠B=15°; (2)如图①中, 在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD, ∴∠B+2∠BAD=90°, ∴△ABD是“准互余三角形”, ∵△ABE也是“准互余三角形”, ∴只有2∠B+∠BAE=90°, ∵∠B+∠BAE+∠EAC=90°, ∴∠CAE=∠B,∵∠C=∠C=90°, ∴△CAE∽△CBA,可得CA2=CE•CB, ∴CE=, ∴BE=5﹣=. (3)如图②中,将△BCD沿BC翻折得到△BCF. ∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD, ∵∠ABD=2∠BCD,∠BCD+∠CBD=90°, ∴∠ABD+∠DBC+∠CBF=180°, ∴A、B、F共线, ∴∠A+∠ACF=90° ∴2∠ACB+∠CAB≠90°, ∴只有2∠BAC+∠ACB=90°, ∴∠FCB=∠FAC,∵∠F=∠F, ∴△FCB∽△FAC, ∴CF2=FB•FA,设FB=x, 则有:x(x+7)=122, ∴x=9或﹣16(舍去), ∴AF=7+9=16, 在Rt△ACF中,AC=.
复制答案
考点分析:
相关试题推荐

扬州漆器名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.

(1)求之间的函数关系式;

(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.

 

查看答案

如图,四边形ABCD、CDEF、EFGH都是正方形.

(1)ACFACG相似吗?说说你的理由.

(2)求∠1+2的度数.

 

查看答案

已知二次函数.

1)求抛物线顶点M的坐标;

2)设抛物线与x轴交于AB两点,与y轴交于C点,求ABC的坐标(点A在点B的左侧),并画出函数图像的大致示意图;

3)根据图像,写出不等式的解集.

 

查看答案

已知:如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙OBC边相切于点D,连结AD. 

(1)求证:AD是∠BAC的平分线;    

(2)若AC= 3,BC=4,求⊙O的半径.

 

查看答案

某工厂1月份的产值是25万元,计划3月份的产值达到36万元,那么这家工厂2月、3月这两个月产值的月平均的增长率是多少?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.