满分5 > 初中数学试题 >

如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,...

如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F连接AE、DE、DF.

(1)证明:∠E=C;

(2)若∠E=58°,求∠BDF的度数.

 

(1)证明见解析;(2)∠BDF=116°. 【解析】 (1)连接AD,已知AB是⊙O的直径,根据直径所对的圆周角是直角即可得∠ADB=90°,即AD⊥BC;由CD=BD可得AD垂直平分BC,根据线段垂直平分线的性质可得AB=AC,所以∠B=∠C;根据同弧所对的圆周角相等可得∠B=∠E,由此即可证得∠E=∠C;(2)已知四边形AEDF是⊙O的内接四边形,根据圆内接四边形对角互补可得∠AFD=180°﹣∠E,由邻补角的定义可得∠CFD=180°﹣∠AFD,从而求得∠CFD=∠E=58°,再由∠BDF=∠C+∠CFD即可求得∠BDF的度数. (1)连接AD, ∵AB是⊙O的直径, ∴∠ADB=90°,即AD⊥BC, ∵CD=BD, ∴AD垂直平分BC, ∴AB=AC, ∴∠B=∠C, 又∵∠B=∠E, ∴∠E=∠C; (2)∵四边形AEDF是⊙O的内接四边形, ∴∠AFD=180°﹣∠E, 又∵∠CFD=180°﹣∠AFD, ∴∠CFD=∠E=58°, 又∵∠E=∠C=58°, ∴∠BDF=∠C+∠CFD=116°.
复制答案
考点分析:
相关试题推荐

如图,在△ABC中,ABACAD平分∠BACDEAB于点E

1)求证:△BDE∽△CAD

2)若AB13AD12,求线段AE的长.

 

查看答案

如图,已知△ABC三个顶点的坐标分别为A(﹣1,﹣1)、B(﹣3,﹣2C0,﹣3

1)以点C为旋转中心将△ABC顺时针旋转90°,得到△A1B1C1,则A1的坐标为     

2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2

3)若网格单位长度为1,求(1)中AB扫过的面积.

 

查看答案

为推进扬州市五个一百工程活动,小明、小亮、小丽3人分别从AB两种不同的名著中任意选择一种阅读

1)小明选择A种名著阅读的概率是     

2)求小明、小亮、小丽3人选择同一种名著阅读的概率(请用画树状图的方法给出分析过程,并求出结果)

 

查看答案

随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17121520170726179

1)这组数据的中位数是     ,众数是     

2)计算这10位居民一周内使用共享单车的平均次数;

3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.

 

查看答案

解下列方程:

1x25x60

2)(12x2x+2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.