点A,B在数轴上表示的数如图所示. 动点P从点A出发,沿数轴向右以每秒2个单位长度的速度运动到点B,再从点B以同样的速度运动到点A停止,设点P运动的时间为t秒,解答下列问题.
(1)当t=2时,AP= 个单位长度,当t=6时,AP= 个单位长度;
(2)直接写出整个运动过程中AP的长度(用含t的代数式表示);
(3)当AP=6个单位长度时,求t的值;
(4)当点P运动到线段AB的3等分点时,t的值为 .
若的度数是的度数的k倍,则规定是的k倍角.
(1)若∠M=21°17',则∠M的5倍角的度数为 ;
(2)如图1,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=∠COE,请直接写出图中∠AOB的所有3倍角;
(3)如图2,若∠AOC是∠AOB的5倍角,∠COD是∠AOB的3倍角,且∠AOC和∠BOD互为补角,求∠AOD的度数.
希腊数学家丢番图(公元3-4世纪)的墓碑上记载着: “他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”
根据以上信息,请你算出:
(1)丢番图的寿命;
(2)丢番图开始当爸爸时的年龄;
(3)儿子死时丢番图的年龄.
如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.
(1)用含m或n的代数式表示拼成矩形的周长;
(2)m=7,n=4,求拼成矩形的面积.
如图,平面上有四个点A、B、C、D,根据下列要求画图.
(1)画直线AB;
(2)作射线BC;
(3)画线段CD;
(4)连接AD,并延长至点E,使DE = AD.
先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.