已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.
(1)求w与x之间的函数关系式,并写出自变量x的取值范围;
(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?
(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.
如图,AB为⊙O直径,D为弧AC的中点,DG⊥AB于G,交AC于E,AC、BD相交于F.
(1)求证:AE=DE;
(2)若AG=2,DG=4,求AF的长.
已知二次函数y=x2﹣3x+4.
(1)配方成y=a(x﹣h)2+k的形式;
(2)求出它的图象的开口方向对称轴顶点坐标;
(3)求当y<0时x的取值范围.
已知的一根为,求另一根和m的值.
如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.
解方程:
(1)x2﹣7=4x;
(2)x2=2x;
(3)x2﹣6x+9=(5﹣2x)2