在同一坐标系中,一次函数与二次函数的图象可能是( ).
A. B. C. D.
如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为
A.(﹣1,) B.(﹣1,)或(﹣2,0) C.(,﹣1)或(0,﹣2) D.(,﹣1)
如图,已知△AOB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是( )
A.150° B.120° C.90° D.60°
如图,⊙O的半径OC垂直于弦AB, D是优弧AB上的一点(不与点A、B重合),若∠AOC=50°,则∠CDB等于
A.25° B.30°
C.40° D.50°
如图,四边形PAOB是扇形OMN的内接矩形,顶点P在上,且不与M、N重合,当P点在上移动时,矩形PAOB的形状,大小随之变化,则AB的长度( )
A.不变 B.变小 C.变大 D.不能确定
某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误的数值是( )
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣11 | ﹣2 | 1 | ﹣2 | ﹣5 | … |
A.﹣11 B.﹣2 C.1 D.﹣5