如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、FC,且EC⊥EF.
(1)求证:△AEF∽△BCE;
(2)若AC=2,求AB的长;
(3)在(2)的条件下,△ABC的外接圆圆心与△CEF的外接圆圆心之间的距离为 .
如图,二次函数y=ax2+bx﹣3的图象与x轴的两个交点分别为A(1,0)、B(3,0),与y轴的交点为C.
(1)求这个二次函数的表达式;
(2)在x轴上方的二次函数图象上,是否存在一点E使得以B、C、E为顶点的三角形的面积为?若存在,求出点E坐标;若不存在,请说明理由.
某网店销售某种商品,成本为30元/件,当销售价格为60元/件时,每天可售出100件,经市场调查发现,销售单价每降1元,每天销量增加10件.若规定每天该商品的销售量不低于300件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
如图,以AB为直径的⊙O交△ABC的边AC于D,且AB2=AC•AD.求证:BC是⊙O的切线.
如图,在和中,,,,且.求DE的长.
如图,转盘中3个扇形的面积都相等.任意转动转盘2次.求指针2次所落扇形中的2个数字的积是正数的概率.(用画树状图或列表的方法写出分析过程,并求出结果)