探索题:(x﹣1)(x+1)=x2﹣1;
(x﹣1)(x2+x+1)=x3﹣1;
(x﹣1)(x3+x2+x+1)=x4﹣1;
(x﹣1)(x4+x3+x2+x+1)=x5﹣1
…
根据前面的规律,回答下列问题:
(1)(x﹣1)(xn+xn﹣1+xn﹣2+…+x3+x2+x+1)=_____.
(2)当x=3时,(3﹣1)(32015+32014+32013+…+33+32+3+1)=______.
(3)求:22014+22013+22012+…+23+22+2+1的值.(请写出解题过程).
观察例题,例:求x2﹣4x+3的最小值.
【解析】
x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1
因为(x﹣2)2≥0,
所以(x﹣2)2﹣1≥﹣1,
即x2﹣4x+3的最小值是﹣1;
请仿照例题求出x2﹣6x+12的最小值.
如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
回答下列问题
(1)填空:x2+=(x+)2﹣_____=(x﹣)2+_____.
(2)若a+=5,则a2+=_____;
(3)若a2﹣3a+1=0,求a2+的值.
(1)9(a﹣1)2﹣(3a+2)(3a﹣1)
(2)[(x+y)2﹣(x﹣y)2]÷(2xy)
如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.