满分5 > 初中数学试题 >

(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE绕点D...

1)如图1E是正方形ABCDAB上的一点,连接BDDE,将∠BDE绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G

线段DBDG的数量关系是     

写出线段BEBFDB之间的数量关系.

2)当四边形ABCD为菱形,∠ADC60°,点E是菱形ABCDAB所在直线上的一点,连接BDDE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC交于点F和点G

如图2,点E在线段AB上时,请探究线段BEBFBD之间的数量关系,写出结论并给出证明;

如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE1AB2,直接写出线段GM的长度.

 

(1)①DB=DG;②BF+BE=BD;(2)①BF+BE=BD,理由见解析;②GM=. 【解析】 (1)①根据旋转的性质解答即可; ②根据正方形的性质和全等三角形的判定和性质解答即可; (2)①根据菱形的性质和全等三角形的判定和性质解答即可; ②作辅助线,计算BD和BF的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论. 【解析】 (1)①DB=DG, 理由是: ∵∠DBE绕点B逆时针旋转90°,如图1, 由旋转可知,∠BDE=∠FDG,∠BDG=90°, ∵四边形ABCD是正方形, ∴∠CBD=45°, ∴∠G=45°, ∴∠G=∠CBD=45°, ∴DB=DG; 故答案为:DB=DG; ②BF+BE=BD,理由如下: 由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG, ∴△FDG≌△EDB(ASA), ∴BE=FG, ∴BF+FG=BF+BE=BC+CG, Rt△DCG中,∵∠G=∠CDG=45°, ∴CD=CG=CB, ∵DG=BD=BC, 即BF+BE=2BC=BD; (2)①如图2,BF+BE=BD, 理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°, 由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG, 在△DBG中,∠G=180°﹣120°﹣30°=30°, ∴∠DBG=∠G=30°, ∴DB=DG, ∴△EDB≌△FDG(ASA), ∴BE=FG, ∴BF+BE=BF+FG=BG, 过点D作DM⊥BG于点M,如图2, ∵BD=DG, ∴BG=2BM, 在Rt△BMD中,∠DBM=30°, ∴BD=2DM. 设DM=a,则BD=2a, BM=a, ∴BG=2a, ∴=, ∴BG=BD, ∴BF+BE=BG=BD; ②过点A作AN⊥BD于N,过D作DP⊥BG于P,如图3, Rt△ABN中,∠ABN=30°,AB=2, ∴AN=1,BN=, ∴BD=2BN=2, ∵DC∥BE, ∴=, ∵CM+BM=2, ∴BM=, Rt△BDP中,∠DBP=30°,BD=2, ∴BP=3, 由旋转得:BD=BF, ∴BF=2BP=6, ∴GM=BG﹣BM=6+1﹣=
复制答案
考点分析:
相关试题推荐

某商店销售一种商品,童威经市场调查发现:该商品的周销售量(件)是售价(元/件)的一次函数,其售价、周销售量、周销售利润(元)的三组对应值如下表:

售价(元/件)

50

60

80

周销售量(件)

100

80

40

周销售利润(元)

1000

1600

1600

 

注:周销售利润=周销售量×(售价-进价)

1)①求关于的函数解析式(不要求写出自变量的取值范围)

②该商品进价是_________/件;当售价是________/件时,周销售利润最大,最大利润是__________

2)由于某种原因,该商品进价提高了/,物价部门规定该商品售价不得超过65/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求的值

 

查看答案

已知关于x的一元二次方程x23xk2+k+10

1)证明:原方程有两个不相等的实数根;

2)若原方程的两实根分别为x1x2,且(x1x2+2)(x1x22)=﹣3,求k的值.

 

查看答案

为建设美丽的城市,某企业逐年增加对环境的经费投入.2014年投入200万元,2016年投入288万元.

1)求2014年至2016年该单位环保经费的年平均增长率;

2)该单位预计2017年投入经费320万元,若想继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.

 

查看答案

如图,在平面直角坐标系中,二次函数的图象交x轴于点AB(点A在点B的左侧).

1)求点AB的坐标,并根据该函数图象写出y0x的取值范围;

2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n6)个单位,将与该二次函数图象上的点B3重合.已知m0n0,求mn的值.

 

查看答案

如图,方格纸上每个小正方形的边长均为1个单位长度,点AB都在格点上(两条网格线的交点叫格点).

1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1

2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2

3)连接AB2BB2,求△ABB2的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.