函数y= (k<0),当x<0时,该函数图像在
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
下列各点,不在函数的图像上的是( )
A. B. C. D.
已知长方体的高是1,长和宽分别是、,体积是,则下列说法正确的是( )
A.是的正比例函数 B.是的正比例函数
C.是或的正比例函数 D.是的正比例函数
二次函数y=﹣x2+bx+c的图象与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为C(﹣3,0).
(1)填空:b=_____,c=_____.
(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;
(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.
如图1,在△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.
(1)如图1,通过图形旋转的性质可知AD=_____,∠DAE=_____度.
(解决问题)
(2)如图1,证明BC=DC+EC;
(拓展延伸)
如图2,在△ABC中,∠BAC=90°,AB=AC,D为△ABC外一点,且∠ADC=45°,仍将线段AD绕点A逆时针旋转90°得到AE,连接EC,ED.
(3)若AD=6,CD=3,求BD的长.
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;最大值是多少?