【解析】
作△BCP的外接圆⊙O,过点O作OF⊥BC于F,延长OF交⊙O于G,连接BG,CG,OB,OC,根据等边三角形的性质和角的和差关系可得∠BDE=∠ADC,∠ABD=∠EDC=60°,可得AB//DE,根据平行线的性质可得∠ABE=∠BED,利用SAS可证明△BDE≌△ADC,可得∠BED=∠ACD,进而可证明∠EBD+∠ACD=∠ABD=60°,根据三角形内角和定理可得∠BPC=120°,根据圆周角定理可得点P在△BCP的外接圆上,∠BPC=∠BGC=120°,可得点D从点B运动到点C时,点P的运动路径长(含与点B、C重合)为的长,根据圆周角定理可得∠BOC=120°,根据垂径定理可得BF的长,利用勾股定理即可求出OB的长,利用弧长公式求出的长即可得答案.
作△BCP的外接圆⊙O,过点O作OF⊥BC于F,延长OF交⊙O于G,连接BG,CG,OB,OC,
∵△ABD和△CDE是等边三角形,
∴∠ABD=∠EDC=60°,
∴AB//DE,∠ABD+∠ADE=∠EDC+∠ADE,
∴∠ABE=∠BED,∠BDE=∠ADC,
在△BDE和△ADC中,,
∴△BDE≌△ADC,
∴∠BED=∠ACD,
∴∠ACD=∠ABE,
∴∠ACD+∠EBC=∠ABE+∠EBC=∠ABD=60°,
∴∠BPC=180°-(∠ACD+∠EBC)=120°,
∴点D从点B运动到点C时,点P的运动路径长(含与点B、C重合)为的长,
∵OG⊥BC,∠BGC=∠BPC=120°,
∴BF=BC=×8=4,∠OGB=∠BGC=60°,
∵OB=OG,
∴△OBG是等边三角形,
∴∠BOG=60°,
∴∠BOC=2∠BOG=120°,∠OBF=30°,
∴OF=OB,
∴OB2=OF2+BF2,即OB2=(OB)2+(4)2,
解得OB=8,(负值舍去),
∴==,
故答案为: