下列从左边到右边的变形,是正确的因式分解的是( )
A. B.
C. D.
下列说法正确的是( )
A.0不是单项式 B.的系数是1
C.是三次三项式 D.的次数是2
如图1,在四边形ABCD中,BC∥AD,∠B=90°,AD边落在平面直角坐标系的x轴上,且点A(5,0)、C(0,3)、AD=2.点P从点E(﹣5,0)出发,沿x轴向点A以每秒1个单位长度的速度运动,到达点A时停止运动.运动时间为t秒.
(1)∠BCD的度数为______°.
(2)当t=_____时,△PCD为等腰三角形.
(3)如图2,以点P为圆心,PC为半径作⊙P.
①求当t为何值时,⊙P与四边形ABCD的一边(或边所在的直线)相切.
②当t______时,⊙P与四边形ABCD的交点有两个;当t_____时,⊙P与四边形ABCD的交点有三个.
某汽车租贸公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.
(1)当租金提高多少元时,公司的每日收益可达到10120元?
(2)公司领导希望日收益达到10160元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由,
(3)汽车日常维护要定费用,已知外租车辆每日维护费为100元未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益﹣维护费)
如图,M,N是以AB为直径的⊙O上的点,且弧AN=弧BN,BM平分∠ABD,MC⊥BD于点C.
(1)求证:MC是⊙O的切线.
(2)若BC=2,MC=4,求⊙O的直径.
(3)在(2)的条件下,求阴影部分的周长.
如图,AB为⊙O直径,PA、PC分别与⊙O相切于点A、C,PE⊥PA,PE交OC的延长线于点E.
(1)求证:OE=PE;
(2)连接BC并延长交PE于点D,PA=AB,且CE=9,求PE的长.