满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与...

如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点Dy轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.

(1)当点P经过点C时,求直线DP的函数解析式;   

(2)①求△OPD的面积S关于t的函数解析式;

②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.

(3)P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.   

 

(1)y=x+2;(2)①S=6或S=﹣2t+16;②点P的坐标是(,10);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2). 【解析】 (1)设直线DP解析式为y=kx+b,将D与C坐标代入求出k与b的值,即可确定出解析式; (2)①当P在AC段时,△ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式; ②当D关于OP的对称点落在x轴上时,直线OP为y=x,求出此时P坐标即可; (3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可. 【解析】 (1)∵OA=6,OB=10,四边形OACB为长方形, ∴C(6,10). 设此时直线DP解析式为y=kx+b, 把(0,2),C(6,10)分别代入,得 , 解得 则此时直线DP解析式为y=x+2; (2)①当点P在线段AC上时,OD=2,高为6,S=6; 当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16; ②设P(m,10),则PB=PB′=m,如图2, ∵OB′=OB=10,OA=6, ∴AB′==8, ∴B′C=10﹣8=2, ∵PC=6﹣m, ∴m2=22+(6﹣m)2,解得m= 则此时点P的坐标是(,10); (3)存在,理由为: 若△BDP为等腰三角形,分三种情况考虑:如图3, ①当BD=BP1=OB﹣OD=10﹣2=8, 在Rt△BCP1中,BP1=8,BC=6, 根据勾股定理得:CP1==2, ∴AP1=10﹣2,即P1(6,10﹣2); ②当BP2=DP2时,此时P2(6,6); ③当DB=DP3=8时, 在Rt△DEP3中,DE=6, 根据勾股定理得:P3E==2, ∴AP3=AE+EP3=2+2,即P3(6,2+2), 综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2). 点睛】此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的定义,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.  
复制答案
考点分析:
相关试题推荐

已知一次函数xy轴分别交于AB两点,xy轴交于CD两点.

1)求ABCD的坐标(用含km的代数式表示);

2)若,求的值;

3)在(2)的前提下,若的面积为27,求m的值.

 

查看答案

某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:

类别/单价

成本价

销售价(元/箱)

24

36

33

48

 

(1)该商场购进甲、乙两种矿泉水各多少箱?

(2)全部售完500箱矿泉水,该商场共获得利润多少元?

 

查看答案

某游泳馆普通票价20/暑假为了促销新推出两种优惠卡

金卡售价600/每次凭卡不再收费

银卡售价150/每次凭卡另收10

暑假普通票正常出售两种优惠卡仅限暑假使用不限次数.设游泳x次时所需总费用为y

(1)分别写出选择银卡、普通票消费时,yx之间的函数关系式

(2)在同一坐标系中若三种消费方式对应的函数图象如图所示请求出点A、B、C的坐标

(3)请根据函数图象直接写出选择哪种消费方式更合算

 

查看答案

已知:点P在直线CD上,

求证:ABCD

 

查看答案

化简计算:

1   

2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.