下列各组数中互为相反数的是( )
A.2与 B.与1
C.2与 D.与
A、B两仓库分别有水泥15吨和35吨,C、D两工地分别需要水泥20吨和30吨.已知从A、B仓库到C、D工地的运价如表:
| 到C工地 | 到D工地 |
A仓库 | 每吨15元 | 每吨12元 |
B仓库 | 每吨10元 | 每吨9元 |
(1)若从A仓库运到C工地的水泥为x吨,则用含x的代数式表示从A仓库运到D工地的水泥为 吨,从B仓库将水泥运到D工地的运输费用为 元;
(2)求把全部水泥从A、B两仓库运到C、D两工地的总运输费(用含x的代数式表示并化简);
(3)如果从A仓库运到C工地的水泥为10吨时,那么总运输费为多少元?
阅读理【解析】
若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.
例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;
又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.
知识运用:
⑴ 如图1,点B是(D,C)的好点吗? (填是或不是);
⑵ 如图2,A、B为数轴上两点,点A所表示的数为-40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?
图1是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的方法拼成一个边长为(m+n)的正方形.
⑴ 请用两种不同的方法求图2中阴影部分的面积.
方法1: ;方法2: ;
⑵ 观察图2写出,,三个代数式之间的等量关系: ;
⑶ 根据⑵中你发现的等量关系,解决如下问题:若,求的值.
出租车司机小王某天下午营运全是在东西走向的太湖大道上进行的.如果向东记作“+”,向西记作“-”.他这天下午行车情况如下:(单位:千米)
-2,+5,-1,+10,-3,-2,-5,+6
请回答:
(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?
(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午共收到多少钱?
先化简,再求值:,其中.