数学课上,李老师出示了如下的题目:
“在等边三角形ABC中,点E在AB上,点D在CB的延长
线上,且ED=EC,如图,试确定线段AE与DB的大小关系,
并说明理由”.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论: (填“>”,“<”或“=”).
(2)特例启发,解答题目
【解析】
题目中,与的大小关系是: (填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).
如图,长方形ABCD中AD∥BC,边AB=4,BC=8.将此长方形沿EF折叠,使点D与点B重合,点C落在点G处.
(1)试判断△BEF的形状,并说明理由;
(2)若AE=3,求△BEF的面积.
如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求证:△BCE≌△DCF;
(2)若AB=21,AD=9,BC=CD=10,求BE的长.
如图,点E在△ABC外部,点D在边BC上,DE交AC于点F.若∠1=∠2=∠3,AC=AE,求证△ABC≌△ADE.
如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.
如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.