如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为( )
A. 30° B. 40° C. 50° D. 60°
下列四个图案中,不是轴对称图形的是( ).
A. B. C. D.
如图1,在圆中,直径,,直线,相交于点.
(1)求的度数;
(2)如图2,与交于点,请补全图形并求的度数;
(3)如图3,弦与弦不相交,求的度数.
如图,是圆的直径,弦交于点,,.
(1)求的度数;
(2)若,求扇形的面积.
某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
某商场销售某种款式童装,一天可售出30套,每套盈利40元.为了扩大销售,增加盈利,商场决定采取降价措施.若一套童装每降价1元,平均每天可多售出2套,设每套童装降价元时,商场一天可获利润元.
(1)求关于的函数解析式.
(2)若要商场每天盈利1500元,则应降价多少元?
(3)当每套童装降价多少元时,商场可获最大利润?最大利润为多少?